강병우 교수 연구실 (15.09)

admin | 2016.07.11 15:59 | 조회 115
 

Abstract 

  Electrochemical activity in high-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is strongly affected by the disordering of Ni/Mn and the presence of Mn3+ ions. However, understanding the effect of the Ni/Mn disordering or the presence of Mn3+ ions on electrochemical properties is not trivial because disordering is typically coupled with the presence of Mn3+ ions. Here, we demonstrate for the first time that the doping of Li instead of Ni increases Ni/Mn disordering, which is decoupled from the presence of Mn3+ ions. The resultant material has a particle size of ~1–2 μm and can achieve 120 mAh g−1 at 10 C for 50 cycles and further deliver about 60 mAh g−1 even at a rate of ~60 C (1 min discharge). Superior electrochemical performance is achieved by increased solid-solution phase transition behavior, which is caused by increased Ni/Mn disordering during delithiation. By decoupling, we find that the electrochemical properties in LNMO strongly depend on the phase transformation behavior and that the Ni/Mn disordering, rather than Mn3+ ions, affects the phase transformation by increasing the solid-solution reaction. The fundamental understanding gained from this work could be applied to the development of other phase-separating compounds to improve their electrochemical performance. 

================================================== 
High electrochemical performance of high-voltage LiNi0.5Mn1.5O4 by decoupling 
the Ni/Mn disordering from the presence of Mn3+ ions 

==================================================
twitter facebook me2day 요즘